The Legendre Equation

Definition 1

(the Legendre equation)
The Legendre equation of order \alpha is the second-order linear differential equation
\displaystyle (1-x^2)y'' - 2xy' + \alpha(\alpha+1)y = 0,
where \alpha  > -1.

The only singular points of the Legendre equation are at +1 and -1, so it has two linearly independent solutions that can be expressed as power series in powers of x with radius of convergence at least 1.

  • The substitution y = \sum c_m x^m in the Legendre equation leads to the recurrence relation

\displaystyle c_{m+2} = -\frac{(\alpha - m)(\alpha + m +1)}{(m+1)(m+2)}c_m

Proof
Let \displaystyle y = \sum^\infty_{m=0} c_m x^m, so that
\displaystyle y' = \sum^\infty_{m=1} mc_m x^{m-1}, \quad y'' = \sum^\infty_{m=2} m(m-1)c_m x^{m-2}.

\displaystyle (1-x^2)\sum^\infty_{m=2} m(m-1)c_m x^{m-2} - 2x\sum^\infty_{m=1} mc_m x^{m-1} + \alpha(\alpha+1)\sum^\infty_{m=0} c_m x^m = 0 \\ \sum^\infty_{m=2} m(m-1)c_m x^{m-2}-\sum^\infty_{m=2} m(m-1)c_m x^m \\ \phantom{\sum^\infty_{m=2} m(m-1)} - \sum^\infty_{m=1} 2mc_m x^m + \sum^\infty_{m=0} \alpha(\alpha+1)c_m x^m = 0\\ \sum^\infty_{m=0} (m+2)(m+1)c_{m+2} x^{m}-\sum^\infty_{m=2} m(m-1)c_m x^m \\ \phantom{\sum^\infty_{m=2} m(m-1)} - \sum^\infty_{m=1} 2mc_m x^m + \sum^\infty_{m=0} \alpha(\alpha+1)c_m x^m = 0 \\ \sum^\infty_{m=2}\Big[(m+2)(m+1)c_{m+2}-m(m-1)c_m - 2mc_m + \alpha(\alpha+1)c_m \Big]x^m \\ \phantom{\sum^\infty_{m=2} }+2c_2x^0 + 6c_3x^1 - 2c_1x^1 + \alpha(\alpha+1)c_0 x^0 + \alpha(\alpha+1)c_1 x^1 = 0\\ \sum^\infty_{m=2}\Big\{(m+2)(m+1)c_{m+2}-[\alpha(\alpha+1)-m(m+1)]c_m \Big\}x^m \\ \phantom{\sum^\infty_{m=2} }+[2c_2+\alpha(\alpha+1)c_0]x^0 + [6c_3 - 2c_1+ \alpha(\alpha+1)c_1] x^1 = 0 \\ \sum^\infty_{m=2}\Big[(m+2)(m+1)c_{m+2}-(\alpha-m)(\alpha+m+1)c_m \Big]x^m \\ \phantom{\sum^\infty_{m=2} }+[2c_2+\alpha(\alpha+1)c_0]x^0 + [6c_3 - 2c_1+ \alpha(\alpha+1)c_1] x^1 = 0

The identity principle requires that

the coefficient of x^0 satisfies \displaystyle 2c_2+\alpha(\alpha+1)c_0 = 0 \Rightarrow c_2 = -\frac{\alpha(\alpha+1)}{2!}c_0;
the coefficient of x^1 satisfies \displaystyle 6c_3 - 2c_1+ \alpha(\alpha+1)c_1 = 0 \Rightarrow c_3 = -\frac{(\alpha-1)(\alpha+2)}{3!}c_1;
the coefficients of x^m for m = 2,3,\ldots satisfy \displaystyle (m+2)(m+1)c_{m+2}-(\alpha-m)(\alpha+m+1)c_m = 0, which yields the recurrence relation

\displaystyle c_{m+2} = -\frac{(\alpha - m)(\alpha + m +1)}{(m+1)(m+2)}c_m .

Actually the recurrence relation is applicable for m = 0,1,2,\ldots.

Intro to DE / Lecture Note 12

Consider a second order linear homogeneous differential equation

\displaystyle a_2(x)y''+a_1(x)y'+a_0(x)y = 0.

As defined in the last lecture, if \displaystyle \frac{a_1(x)}{a_2(x)} and \displaystyle \frac{a_0(x)}{a_2(x)} are analytic at x_0, then x_0 is an ordinary point; otherwise, x_0 is an singular point (singularity).

Theorem 1


If x_0 is an ordinary point of Equation (1), then there exist two linearly independent solutions of the form \displaystyle \sum_{n=0}^\infty c_n(x-x_0)^n, where the series converges on |x-x_0| < R for some R>0.

Note
For convenience, it’s often to let x_0 = 0. When x_0 = 0 is not an ordinary point, then make a shift!

繼續閱讀 Intro to DE / Lecture Note 12

我見青山多嫵媚

賀新郎
邑中園亭,僕皆為賦此詞。一日,獨坐停雲,水聲山色,競相來娛,意溪山欲援例者,遂作數語,庶幾彷彿淵明思親友之意云。

甚矣吾衰矣。悵平生交遊零落,只今餘幾!白髮空垂三千丈,一笑人間萬事。問何物能令公喜?我見青山多嫵媚,料青山見我應如是。情與貌,略相似。

一尊搔首東窗裏。想淵明、停雲詩就,此時風味。江左沈酣求名者,豈識濁醪妙理。回首叫雲飛風起。不恨古人吾不見,恨古人不見吾狂耳。知我者,二三子。

繼續閱讀 我見青山多嫵媚
使用 WordPress.com 設計專業網站
立即開始使用