【知識論】Short Essay #6

題目

Must Cartesian skepticism depend on CP? Explain your answer.

申論

我認為笛卡兒懷疑論不需要依賴知識封閉原則 (Closure Principle,CP)。其實的笛卡兒懷疑論的出發點很簡單,就是:一切命題1 都是非不可誤的(indefeasible),因此是不可靠的、值得懷疑的。所以懷疑論會基於一些基本假設,例如「我不知道我不是桶中腦(BIV)」或「我不知道我不處於被惡魔欺騙一切的世界」,目的是希望主張我們沒有任何知識。

以下我們仿照懷疑論的挑戰者的手法,用形式語言來建構簡單的懷疑論論證S12

1. ¬K(¬s)                        P
2. K(p→¬s)                      P
3. ¬K(¬s)∧K(p→¬s)               1, 2, Conj
4. ¬K(¬s)∧K(p→¬s)→¬Kp          P
5. ¬Kp                          3, 4, MP
繼續閱讀 【知識論】Short Essay #6

【微分方程導論】筆記6

Theory for Higher Order Linear Homogeneous Differential Equations

Equation (1)

We call differential equation described in the form of Eqn. (1) the nth-order linear homogeneous ODE, where ai(x) are functions of x, for i = 0,1,…,n.

Note All theories about nth-order linear ODEs are analogous to those about the second-order linear ODEs. For example,

Theorem 1
Let y1, y2, …, ym be the m solutions of L[y]=0.
Then c1y1 + c2y2 + … + cmym is a solution of L[y]=0, for any set of ci.

Theorem 2
Let y1, y2, …, yn be the n independent solutions of L[y] = 0.
If φ(x) is another solution of L[y] = 0, then there exists a set of constants c1, c2, …, cn, such that φ(x) = c1y1 + c2y2 + … + cnyn.

Definition 1
If y1, y2, …, yn are the n independent solutions of L[y] = 0,
then they are called the fundamental set of solutions of L[y] = 0, and c1y1 + c2y2 + … + cnyn is called the general solution of L[y]=0.

Definition 2
Let f1, f2, …, fn be of class (n-1) and be defined on an interval (a, b). The Wronskian of f1, f2, …, fn is defined by

Formula (2)

Theorem 3
Let y1, y2, …, yn be the n solutions of L[y] = 0, and all be defined on an open interval (α, β).
Then, either: (i) W(y1, y2, …, yn)(x) = 0 for all x ∈ (α, β), or
(ii) W(y1, y2, …, yn)(x) ≠ 0 for all x ∈ (α, β).

The Wroskian provides a quick method to examine whether a set of functions are linearly independent.

Theorem 4
Let y1, y2, …, yn be the n solutions of L[y] = 0, and all be defined on an open interval (α, β).
Then, W(y1, y2, …, yn)(x) ≠ 0 for some x ∈ (α, β),
if and only if y1, y2, …, yn are linearly independent.

Note
In order to make Theorem 4 hold, y1, y2, …, yn need to be solutions of SAME equation.

Example 1

Consider the function sets (a) and (b):

Function set (a)
Function set (b)

Assume they are, individually, solutions of some linear homogeneous equations with constant coefficients.
Examine if they are linearly independent.

Solution (a)
We may choose that c1= 1, c2 = −2, c3 = 0, so that

Thus, they are linearly dependent. ❏

Solution (b)
We can use Theorem 4 and calculate the Wronskian:

Because for any x ∈ ℝ, W(x) ≠ 0, the functions of (b) are linearly independent. ❏

Note
Actually the function set (b) is the fundamental set of solutions of the equation

or, in terms of differential operator D ≡ d/dx,

Notice that exp(−3x) is the solution of (D+3)y=0 ; cos(2x) and sin(2x) form the fundamental set of solution of (D2 + 4)y = 0.

The General Solution of L[y] = 0 with Constant Coefficients

Now, consider the nth-order linear homogeneous ODEs with constant coefficients

Equation (3)

where ai, i = 0,1,…,n, are constants.

Inspired by the fact that exponential functions are the very solutions of D[y] = 0, we specify the function

Solution (4)

to be a solution of Eqn. (3). Substituting Eqn. (4) into Eqn. (3), one will obtain the characteristic equation

Equation (5)

Eqn. (5) is an algebraic equation rather than differential equation. According to the fundamental theorem of algebra, there exists, counted with multiplicity, exact n (complex) roots of Eqn. (5).

Discussion

Case 1 (only distinct real roots)

Suppose the roots of Eqn. (5) are n distinct real roots:

Roots (6)

then the corresponding solution set of Eqn. (3) is

Solution set (7)

and the general solution of Eqn. (3) is

Solution (8)

It can be proved that the Wronskian of Eqn. (7) is a non-vanishing function of x, and thus those solutions are linearly independent.

Case 2 (complex conjugate roots)

Suppose the roots of Eqn. (5) are (n – 2) distinct real roots and one pair of complex conjugates:

Roots (9)

where rj (j = 1,2,…,k), a and b are real,then the corresponding solution set of Eqn. (3) is

Solution set (10)

One can write the general solution of Eqn. (3) based on the linear combination of elements of solution set (10). If there are two pairs of complex conjugates,

Roots (11)

where r (ℓ = 1,2,…,n − 2k), aj, and bj (j = 1,2,…,k) are real, then the corresponding solution set of Eqn. (3) is

Solution sets (12)

Case 3 (repeated roots)

Suppose one of the roots of Eqn. (5) r = rk has multiplicity p, that is, r = rk is repeated p times. If rk is real, then it corresponds to the solution set

Solution set (13)

which is a subset of the solution set of Eqn. (3). And if rk is a pair of complex conjugates, and can be written a ± bi, where a and b are real, then the root rk corresponds to the solution set

Solution set (14)

Example 2

Find the general solution of the following equation:

Equation (15)

Solution
The characteristic equation of Eqn. (15) is

which can be factorized into

This leads to the roots r = 0, −5, 2.
Therefore, the general solution of Eqn. (15) is

Example 3

Find the general solution of the following equation:

Equation (16)

Solution
The characteristic equation of Eqn. (16) is

its roots are

Thus, the general solution of Eqn. (16) is

Otherwise, if we write down each solution of r,

then the general solution of Eqn. (16) will be

Example 4

Find the general solution of the following equation:

Equation (17)

Solution
The characteristic equation of Eqn. (17) is

which can be easily solved if we factorize it into

The solution is r = −1, −1, −1. Thus, the general solution of Eqn. (17) is

Example 5

Find the general solution of the following equation:

Equation (18)

Solution
The characteristic equation of Eqn. (1) is

Equation (19)

It is not easy to find the factors of Eqn. (19) directly, but we may assume that it has rational roots: ±1, ±2, ±4, ±8. By the factor theorem, if Eqn. (19) has a root r = a, then P(a) = 0, where P(r) stands for the polynomial in Eqn. (19). We find that P(−1) = 1 + 5 + 6 − 4 − 8 = 0, so we can factorize Eqn. (19) and obtain

And we find that P(2) = 16 − 40 +24 + 8 − 8 = 0, so we factorize again :

Finally,

The roots of Eqn. (19) are −1, 2, 2, 2. Therefore, the general solution of Eqn. (18) is

關於情態動詞mögen和möchten

「情態動詞」(Modalverben; modal verbs)是一些表達可能、能力、許可、必然、義務、意志等「情態」(Modalität; modality)的特殊動詞。德文的情態動詞通常指以下6個:dürfen, können, mögen, müssen, sollen, wollen.

德文的教學上,常常會看到也同時把「möchten」當作情態動詞之一,與mögen、wollen等等同時講解,因為這個詞在日常生活中太常用到了,很多書會先強調它的用法,而省略它的文法地位。因為其實möchten不是獨立的一個動詞,而是mögen的變位(Konjugation; conjugation)。

在文法入門書Basic German: A Grammar and Workbook當中,有清楚的把möchten歸類於mögen底下,說明möchten是mögen的虛擬式。在教科書Berliner Platz NEU 1 當中,則是以(möcht-, …)相當於一般動詞的「不定式」,並在下方列出它人稱變化。以下我就採用möcht-作為它的「不定式」。

文法上的區別

在文法上,mögen是不定式,möcht-則是mögen的「第一、三人稱複數」的「虛擬二式」。不定式:mögen

  • mögen的直陳式現在時(Indikativ Präsens; present indicative)

ich mag
du magst
er/sie/es mag
wir mögen
ihr mögt
sie mögen
Sie mögen

  • mögen的虛擬二式(Konjunktiv II; past subjunctive)

ich möchte
du möchtest
er/sie/es möchte
wir möchten
ihr möchtet
sie möchten
Sie möchten

還有一組跟上面很像的:

  • mögen的直陳式過去時(Indikativ Präteritum; past indicative)

ich mochte
du mochtest
er/sie/es mochte
wir mochten
ihr mochtet
sie mochten
Sie mochten

用法上的區別

1. mögen的虛擬二式möcht-

möcht-最主要的用法是(比較委婉、客氣地)表達「想要」,相當於英文的’would like (to)’。一般要表達「想要」,可以用另一個情態動詞 wollen,相當於英文的’want (to)’。例如:

  • Ich möchte Bier trinken. I would like to drink beer. (較客氣)
  • Ich will Bier trinken. I want to drink beer.(一般)

möcht-也可以自己作實義動詞(full verb),不與動詞不定式連用,但wollen卻不能:

  • Ich möchte eine Flasche Bier. I would like/want a bottle of bier.
  • *Ich will eine Flasche Bier.

2. mögen的其他時態

mögen的主要用法是表達「喜歡」,相當於英文的’like (to)’或’wish (to)’。作實義動詞時,mögen經常用於(但不只限於)表示否定,主要是針對人、地方、食物、活動,例如:

  • Ich mag Bier. I like beer.
  • Du magst keine Paris. You don’t like Paris.
  • Ich mag dir nicht. I don’t like you.

接動詞不定式時,只用於否定,例如:

  • Ich mag mit dir nicht mitgehen. I don’t like to go with you.
  • Er mochte Käse nicht essen. He didn’t like to eat cheese.

 

使用 WordPress.com 設計專業網站
立即開始使用